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We introduce a new technique for handling chemical master equations, 
based on an expansion of the probability distribution in Poisson distribu- 
tions. This enables chemical master equations to be transformed into 
Fokker-Planck and stochastic differential equations and yields very simple 
descriptions of chemical equilibrium states. Certain nonequilibrium systems 
are investigated and the results are compared with those obtained previ- 
ously. The Gaussian approximation is investigated and is found to be valid 
almost always, except near critical points. The stochastic differential equa- 
tions derived have a few novel features, such as the possibility of pure 
imaginary noise terms and .the possibility of higher order noise, which do 
not seem to have been previously studied by physicists. These features are 
allowable because the transform of the probability distribution is a quasi- 
probability, which may be negative or even complex. 
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1. I N T R O D U C T I O N  

The invest igat ion o f  f luctuat ion p h e n o m e n a  in chemical  react ions  is a subject  
which has been s tudied t h rough  two ma in  formula t ions ,  the  Langevin  equa-  
t ion approach ,  espoused  by  N i t zan  et al. ~1~ and  Keizer ,  ~2) and  the s tochast ic  
mas te r  equa t ion  a p p r o a c h  used by  G a r d i n e r  et al., ~31 van K a m p e n ,  r and  
Prigogine,  Nicolis ,  and  co-workers .  ~6-1~ A t  the basis  o f  the former  a p p r o a c h  
is the concept  o f  concen t ra t ion  f luctuat ions in chemical  react ions  as Gauss ian ,  
a concept  whose va l id i ty  is assumed to be assured by  the centra l  l imi t  
theorem.  The  precise magni tude  o f  the f luctuat ions  is, in t h e r m o d y n a m i c  
equi l ibr ium,  computab le  f rom f luctuat ion d iss ipa t ion  theorems,  mos t  clear ly 
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enunciated by Grossman. (11~ Gardiner has recently emphasized (12~ that the 
extension of these Langevin equations to nonequilibrium systems requires 
some information of the mechanisms involved, such as a master equation as 
discussed in the next paragraph. Indeed, Kurtz's (la~ central limit theorem for 
master equations can be used to give a Gaussian approximation that is 
equivalent to Keizer's c2~ Langevin equations. 

The stochastic master equation methods are more precisely defined, since 
they have as their starting point a simple kinetic picture of reactions being 
induced by collisions between molecules which move about in space by 
diffusion. The master equations that arise from such considerations have a 
rather simple appearance, but are by no means easy to solve in any systematic 
way, particularly when there are many variables, as when diffusion is included. 
Various methods exist; e.g., van Kampen's system size expansion(4~ generating 
function methods, (14~ the cumulant expansion methods, c~5,~6) and the recent 
work of G/Srtz and Walls. (~7~ None of these is easy to use in practice, though 
van Kampen's method (4"18~ is capable of yielding a systematic method of 
approximation. 

Any method for transforming stochastic master equations into Langevin 
equations would obviously be very useful, and we have been able to do this 
by means of a simple technical device. We expand the probability distribution 
for the numbers of molecules of chemical species as a superposition of 
Poisson distributions, and thus introduce a quasiprobability distribution 2 
which obeys a generalized Fokker-Planck equation. If only bimolecular steps 
are involved, which is in realistic cases almost always true, this Fokker- 
Planck equation involves no more than the usual first derivative (drift) and 
second derivative (diffusion) terms. In general cases, derivatives of no more 
than finite order occur. This Fokker-Planck equation is totally different from 
that which arises from the system-size-expansion method, which is only an 
approximate consequence of the master equation, whereas ours follows 
exactly from the master equation. 

The quasiprobability introduced has one major difference from a 
genuine probability distribution: It need not be positive and indeed the range 
of the transformed stochastic variable is in some cases a curve in the complex 
plane. Nevertheless, the moments of the quasiprobability are equal to the 
factorial moments of the probability distribution in numbers of molecules, 
and the quasiprobability provides all the information one normally requires, 
simply and directly. 

The reader with some familiarity with quantum optics will recognize a 
certain qualitative resemblance to the Glauber-Sudarshan P-representation 
for the photon density matrix in terms of coherent states, which give Poisson 

This method was introduced in Ref. 19. 
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distributions in the photon number. (2~ Although we were motivated by the 
success of the P-representation, we must emphasize that this Poisson repre- 
sentation is quite different from it. 

In the case of a single-variable system, we may solve for the steady state 
of the generalized Fokker-Planck equation by direct integration as for any 
Fokker-Planck equation. It is now possible to obtain from the quasi- 
probability an asymptotic expansion of moments in inverse powers of the 
system volume. The lowest order terms are the same as those obtained by 
making any of the more conventional approximations mentioned above. For 
multivariate systems, or time-dependent systems, the solution of the Fokker-  
Planck equation is no longer readily accessible in general, and it is best to 
go over to the stochastic differential equation method by means of the well- 
known equivalence between Fokker-Planck equations (diffusion processes) 
and Langevin equations, or more precisely, stochastic differential equa- 
tions. (22'24~ This equivalence is rigorous and the stochastic differential equa- 
tion that thus arises is a mathematically well-defined object, which can be 
solved iteratively to an arbitrary accuracy, to give an expansion in inverse 
powers of the system volume, which is applicable in multivariable and time- 
dependent situations. In the case of systems with spatial diffusion, the system 
must be divided up into cells of volume A V and the expansion will be in 
inverse powers of this volume. 

Our paper is divided rather naturally into three parts. In Sections 2, 3, 
and 6, we introduce our Poisson representation, and apply it to systems whose 
steady state is thermodynamic equilibrium. We show that, by always using 
the grand canonical ensemble and ideal gas or solution theory, steady states 
in thermodynamic equilibrium may always be chosen to be Poissonian. To 
emphasize this fact, we derive this Poisson result purely from statistical 
mechanical considerations. In a Poisson representation, such distributions are 
very simply treated. 

Sections 4 and 5 are technical in nature. Section 4 reviews the formalism 
of stochastic differential equations, and Section 5 extends these techniques 
heuristically to define higher order noise, which is necessary for higher order 
Fokker-Planck equations. This appears to be a new theory, applicable only 
to quasiprobabilities, since in general higher order noise generates negative 
probabilities. 

Sections 7 and 8 treat various systems whose steady state is not thermo- 
dynamic equilibrium, omitting spatial dependence in Section 7, and including 
it in Section 8. 

Our conclusions are given in Section 9, and the appendices contain 
various technical points. 

This is the first of two papers, the second of which will treat two-time 
correlation functions. 
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2. THE POISSON DISTRIBUTION A N D  ITS RELATION 
TO STATISTICAL M E C H A N I C A L  SYSTEMS DESCRIBED 
BY CHEMICAL MASTER EQUATIONS 

2.1, The Grand Canonical and Canonical Ensembles in 
Thermodynamic Equilibrium 

Although we shall base most of this paper on the use of chemical master 
equations, it is necessary to establish firmly that under conditions of ideal 
reacting gas or solution theory, and using only the techniques of statistical 
mechanics, distribution functions may be chosen as Poissonian. If  we consider 
a system composed of chemically reacting components A, B, C ..... the distri- 
bution function in the grand canonical ensemble is given by 

where I is an index describing the microscopic state of the system, na(I) is 
the number of  molecules of A in the state I, E(I) is the energy of the state, 
t~a is the chemical potential of component A, f~ is a normalization factor, and 

fl = 1/kT (2) 

The fact that the components can react requires certain relations between 
the chemical potentials to be satisfied, since a state I can be transformed into 
a state J only if 

~, vaAn,~(I) = ~, v,~Ana(J), A = I, 2, 3,... (3) 
a a 

where the v~ a are certain integers. The relations (3) are the stoichiometric 
constraints. 

The canonical ensemble for a reacting system is defined by requiring 

E vaAna(I) = "rA (4) 
a 

whereas the grand canonical ensemble is defined by requiring 

P(I) ~ vaAna(I) =-- E v~A<na~ = ~.a (5) 
I a a 

Maximization of entropy subject to the constraint (5) (and the usual 
constraints of fixed total probability and mean energy) gives the grand 
canonical form (1), in which the chemical potentials also satisfy the relation 

t~, = ~.. Kav~ A (6) 
A 

When one takes the ideal solution or ideal gas limit, in which interaction 
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energies (but not kinetic or internal energies) are neglected, there is no 
difference between the distribution function for an ideal reacting system and 
an ideal nonreacting system, apart from the requirement that the chemical 
potentials be expressible in the form (6). 

The canonical ensemble is not so simple, since the constraints (3) must 
appear explicitly as a factor of the form 

and the distribution function is qualitatively different for every kind of 
reacting system (including a nonreacting system as a special case). 

The distribution in total numbers n~ of molecules of reacting components 
in the grand canonical ensemble of an ideal reacting system is easily evalu- 
ated; namely 

P({n~})=exp@[f~+~t~ana]}~3(na(I),na)exp[-BE(I)] (8) 

The sum over states is the same as that for the canonical ensemble of an 
ideal nonreacting mixture, so that 

t[ .ll }o P({n~}) = exp fi f2 + ~ ~a a 1~  ~ exp [-flEk(a)] (9) 
a J J  a a ' \ / c  

where Ek(a) are the energy eigenstates of a single molecule of the substance A. 
This result is a multivariate Poisson with mean numbers given by 

log[(n,~)] = fltz,~ - log(~ e-"~,~ (a') (10) 

which, as is well known, when combined with the requirement (6) gives the 
law of mass action. 

The canonical ensemble is obtained by maximizing entropy subject to 
the stronger constraint (4), which implies the weak constraint (5). Thus, the 
distribution function in total numbers for the canonical ensemble will simply 
be given by 

P({n~}) oc [ ~  h ( ~  e-aE~(a')n"l ~A 8 ( ~  v=An'~' rA) (11) 

2.2. Appropr ia teness  of  the  Grand Canonical  Ensemble 
and Poisson Dis t r ibut ions  

It is usual to state that it is quite unimportant for physical purposes 
which ensemble is used, and we agree with this. However, what is unfor- 
tunately also true is that many stochastic master equations describe quite 
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unphysical quantities, and in these cases, there may be very large differences 
between the two ensembles. This is no fault of the master equations--rather, 
it is a fault of the investigator in choosing to study unmeasurable quantities. 
Consider, for example, the system 

k2 
X T Y (12) 

in which we use the symbols X and Y to denote the numbers of molecules 
of X and Y in the system, which consists of a macroscopic vessel, e.g., a test 
tube. Then the grand canonical ensemble gives for variances and correlations 

Cx ~ = ( x ) ,  ~ = ( Y } ,  ~x r  = 0 (13) 

while the canonical ensemble gives 

r  ~ = r = ~ = ( x ) ( r } t ( ( x )  + ( Y ) )  (14) 

From the point of view of fluctuations, there is a world of difference between 
the two ensembles. In practice, as is well known, it is quite impossible to 
measure these quantities for a macroscopic system, and the choice of which 
ensemble to use is purely a matter of taste, as both results are equally 
irrelevant to physics. 

What are of interest, though, are locally fluctuating quantities. In such 
a case one divides the system into cells labeled i and introduces local numbers 
X~ and Y~. Since transport can occur between cells, all stoichiometric relations 
will include summation over all cells, i.e., (4) becomes 

1/ A ~ a ~na . ,  =~'a (15) 

and one obtains for the grand canonical distribution 

P({na,~}) = exp{/~[f~ + a.,~-'l~ana'~]~J., Ha,, na.,!l'~ f ~exp[_flEk(a)])n,,.~ (16) 

and for the canonical distribution 

a 1 P({na.~}) w. ~ 3(a~, ~ vaana.,, "r )(~a.~ ~ (~ e-a~,,~a') '~~ (17) 

In Appendix A we show that for all local calculations, these distributions are 
equivalent--the canonical distribution gives locally Poissonian uncorrelated 
results in the large-volume limit, as indeed ought to be the case. The grand 
canonical result for the thermodynamic equilibrium is so much simpler to 
use that we shall use it almost exclusively in the rest of this paper. 
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3. THE POISSON REPRESENTATION 

3.1. Generalized Fokker-Planck Equations 

A natural procedure which arises from the multi-Poissonian nature of 
ideal system distributions in the grand canonical ensemble is to expand all 
distributions as linear combinations of the Poissonian result. In this section 
we shall illustrate the method of the Poisson representation through a few 
examples of chemical reactions whose steady state is thermodynamic equi- 
librium. We shall show that both canonical and grand canonical ensembles 
can be treated, but the method is clearly adapted to the grand canonical 
ensemble. 

3.1.1. A Linear Reaction. 
tion~3'~) 

X 

Consider a two-component linear reac- 

kl 
Y (18) 

described by the master equation 

dP(X, Y, t)/dt = k l[ (X + 1)P(X + 1, Y - 1, t) - XP(X, Y, t)] 

+ kz[ ( r  + I ) P ( X -  1, Y +  1, t ) -  rP(X,  Y, t)]  (19) 

We expand P(X, Y, t) in Poisson distributions thus 
~ x ~ Y 

P(X,  Y, t) = C aax dare -"x 2~7 e-aY -~ ( f (ax ,  at ,  t) (20) X. Y.  

where C is the normalization factor. (The region of integration is as yet 
unspecified.) A major advantage of the Poisson representation is the relation 
between factorial moments of X and Y and the moments of ax and ay, i.e., 

X ( X  - t)..- (Jr - r + I)Y(Y - 1) .-. (Y - s + I)P(X, Y, t) 
X , Y  

c f d~x day ~x'~Sr(~x, ~y, t) (21) 

This simple relation is valid only for equal time correlation functions; we 
treat two-time correlation functions in a separate paper. 

Furthermore, the representation (20) always exists, at least in the sense 
of a generalized function, since 

3x, x, = f da e-~ -~.t [3x'(-a)e~ (22) 

and any distribution in X can be realized as linear combinations of 3x,x, 
for different X'. 

Then if f (~x ,  ay, t) (henceforth referred to as the quasiprobability 
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distribution) vanishes at the boundary of the region of integration, substi- 
tution of (19) in (18) and integration by parts yields the Fokker-Planck 
equation 

= (  ~ O )[(kl~x - k2~r)f(ax, ay, t)] (23) Of(ax,star, t) -8-~x + 

Note that the diffusion coefficient in the above Fokker-Planck equation is 
zero. This is a characteristic feature of linear reactions, which indicates that 
all the noise arises from Poissonian fluctuations. 

The region of integration in (20) is obtained by solving (23) and finding 
the region in the (ax, c~r) plane on the boundary of whichf(ax, ~r) vanishes. 

A general steady-state solution of (23) that satisfies the boundary condi- 
tion thatfvanishes at the limits of the region of integration is 

f (ax ,  at) = 8(k~ax - k2a~.)r =y) (24) 

where r czy) is any arbitrary function of ~x and a~..a If r is chosen to be 
8(~ x - _g), the corresponding steady-state distribution P(X, Y) is 

f ~ X ~Y 
P(X, Y) = C dc~x daz e-~x ,~x o-~r "~" 8(k,ax - k=ay) 8(~ x - 37) (25) 

- X !  ~ Y !  

The region of integration in (25) is any region in the (~x, ~r) plane that 
contains the point where the arguments of the two delta functions vanish. 

From (25) we get 

(X)X ( F)r (26) P ( X , Y ) =  [ e x p ( - . g -  Y)] X! Y! 

a Poisson distribution in X and Y, X and ? being related by the deterministic 
equation 

k t 2 g -  k2 ]7 = 0 (27) 

If, however, we set 

r a~-) = (--1) N 3N(a~)e~x+~r (28) 

where 3N(ar) is the Nth derivative of 8(at) with respect to at ,  then we obtain 

P(X, Y ) =  C' 1 1 T.v ~ (.~)x(F)r 3(X + Y - N) (29) 

with 

k~.g = k2 Y = [k~k2/(k~ + k2)]N (30) 

a binomial distribution, corresponding to the canonical ensemble. 

a There is also the possibility f(ax, ay) = g(~x + ay)/(klax - k2ar), which is actually 
equivalent as a generalized function to (24), provided integrations are chosen in the 
complex plane. With the choice of integration region along the real axis, the form 
(24) is unique. 
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3.1.2. A G e n e r a l  R e a c t i o n ,  Let us consider a reaction of the form 

l W + m X  ,:,,,kl , p y + q Z  (31) k~ 

described by the master equation 

dP( Fk . X,  Y , Z , t )  = k t [ ~ w  + l)! ( X x ~ ) ! e ( w +  I, x +  m, r -  ? , z  - q, t) 
dt [ w~ 

W! X[ 
( w  - I)! ( x  - m)! P ( w '  x ,  Y , Z ,  t)] 

k ~ [ ( r  + p)! ( z  + q)! + p! -~! P ( W - I , X - r n ,  Y + p , Z + q , t )  
L 

Y! Z!  
( r  - p)! (Z  - q)l P tW'  ~ x ,  Y , Z ,  t)] (32) 

We thus define by the choice of master equation (32)" combinatorial kinetics," 
in which the probability per unit time of a given reaction is given by the 
number of ways of assembling the relevant initial states, multiplied by a 
certain rate constant, which gives a generalized Fokker-Planck equation, 

Of(aw, ~x, ay, az, t) 
8t 

= + + + 0 ~ ] 

x [(k2ay~az q - klawtaxm)f(aw, ax, at ,  O:z, t)] (33) 

the steady-state solution of which is of the form 

8 ( k l ~ d ~  m - k2~Y'~zq)r ~x, ~Y, ~z) (34) 

(We have again made the requirement that f vanishes on the boundaries of 
the range of the variables.) Different forms for r162 c~x, at ,  ~z) give different 
distributions for P(W,  X, Y, Z) .  By choosing 

r ~ ,  ~ ,  ~ )  = a ( ~ ,  - if-) a ( ~ , ~  - 2) ~(~ - ~) 0@~) (35) 
where 

O(~z) = O, ~z < 0 

= 1, ~z >i 0 (36) 

we obtain a multi-Poisson solution for P(W,  X, Y, Z) .  The alternative 

8(k~awZax m - k2aYVazOr ax, at, az) 

[ = e<,w + :x + <,Y + <'z a " ( -  aw) aM(- ,~x)  3 " ( -  ay) ,S C<z - \ ~ ] j 

(37) 
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(which is not normalized) gives the solution 

K! M! N[ ~kl~ z/q 
e(w,  x,  r, z) = w! x!  rt z !  a,~.w+z~,o a~,.x.zm,o aN,~-.z,q~] (38) 

By defining 

k l f f ' zk  m = k2 I~P2 q (39) 

we can rewrite this as 

~ 2 x  ?Y2z 
P(W,  X, Y, Z )  oc W! X! Y! Z!  8K,w+zt/q 8M,X+Zm/q 8N,r-pZ/~ (40) 

This corresponds to a canonical distribution. The conserved quantities for the 
reaction (31) are 

A = m W -  IX, B = q Y -  pZ ,  C = pq (mW + IX) + ml (qY  + p Z )  

(41) 

and the product of Kronecker deltas in (38) can be written 

8A)rnK_tMSB,qNSC,mlqN + pqlM + pqmK (42) 

Thus we find that the probability distribution that arises from the form 
(37) for ~(aw, ax, a t ,  az) is a multivariate Poisson, multiplied by Kronecker 
deltas which fix the values of the conserved quantities. Van Karnpen C2~> has 
shown that a general chemical master equation admits solutions of the form 
(11), of which (40) is a special case. 

It is clear that not all possible distributions of the canonical form are 
obtained by the choice (37), in which az is integrated first, but by selecting 
(Zw, a t ,  and ax in turn, we can get every possibility. 

3.2. General Solutions 

The functions ~ in the last two reactions are arbitrary, and the most 
general solution corresponds to an arbitrary distribution over all values of 
the conserved quantities. However, these give, from the thermodynamic point 
of view, distributions that one does not normally consider. In order to keep 
close contact with thermodynamics, we have considered only canonical and 
grand canonical solutions. 

3.3. Reactions Including Spatial Diffusion 

Any realistic description of a chemical reaction system must incorporate 
diffusion of particles from one region to another. This may be achieved by 
dividing the system into n cells and viewing the process of diffusion as an 



The Poisson Representation. I 439 

exchange of one particle at a time between cells. The master equation for 
reaction-diffusion systems has been treated thoroughly in Refs. 3 and 4. 

Using the notation of Ref. 3, we write the master equation for an 
arbitrary chemical reaction including diffusion of two species as 

cqP(X, Y, t) 
= ~.s [d~(X, + 1) P ( X ,  + 1, X s - 1, f(, Y ,  t)  - dXXs P(X, Y, t) 

Ot 

+ dS(Y, + 1) P(X, Y, + 1, Ys - 1, i ' ,  t) - d~ Y; P(X, Y, t)] 

6qp 
 43) 

The chemical part for each cell is determined from the appropriate reaction. 
The corresponding Fokker-Planck equation is 

Ot = ~ d~(ax,s - ax,i) f (o tx ,  az ,  t)  

~f 

(44) 

The noise in this Fokker-Planck equation arises only from the chemical term, 
and is entirely independent of the spatial diffusion, which is a linear process. 
This considerably simplifies the treatment of such systems. 

The steady-state solution of (44) for the reaction 

is 

k l  
IX �9 k= mY (45) 

i = l  i = 1  

(46) 

and gives a multi-Poisson distribution for P ( X ,  Y) .  The alternative canonical 
form arises from 

n - 1  

f ( a x ,  at) = I--I 3(ax., - ax.,+ O ff--I 3(k~a~x.' - k2ar~.o( - 1) N 3N(czX.~) 
f=l i=l 

(47) 

which gives 

P(X, Y) = (2)x '  ( #)y' ~ ( lX,  + m Y,) - N 
,=1 X,! Y~! 

(48) 
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3.4. The Poisson Representation and Its Relation to the 
Generating Function Method  

A well-known procedure for solving chemical master equations is the 
generating function method discussed extensively in Refs. 3 and 14. The 
generating function G(s, t) defined as 

G(s, t )  = ~ s x l  ... sX~P(X,  t )  (49) 
{xo 

enables one to convert the master equation into a partial differential equation 
in the variables sl  .. . . .  s~,t .  

Substituting the Poisson representation for P(X, t) in (49), we get 

G(s, t) = de exp ~t(s, - 1) f(=,  t) (50) 

which corresponds to the expansion of G(s, t) in terms of the generating 
functions for the Poisson distribution. 

Substituting (50) in the generating function equation and integrating by 
parts, one obtains the generalized Fokker-Planck equation provided that the 
contour C is chosen such that the boundary terms vanish. In general, there 
are several such contours, and to each of these there corresponds, by use of 
(50), a different solution of the generating function differential equation. 
However, only one of these solutions, and thus one of the contours, corre- 
sponds to an admissible probability distribution. 

Now from (49) it follows that if P(X, t) and all its moments exist, then 
G(s, t) must be analytic in and on the boundary of the region ]st[ ~< 1, 
i = 1 ..... N, in the manifold of complex variables sl ..... sz~. In particular, 
G(s, t) and all its derivatives must be finite at st = +_ 1. This criterion enables 
one to eliminate physically inadmissible contours; we shall illustrate its use 
by specific examples in Appendix C. 

Here we wish to emphasize that the requirement that G(s, t) be analytic 
for [st[ ~< 1 is valid only if all the moments of P(X, t) exist. This is usually the 
case with the chemical master equations with combinatorial kinetics. How- 
ever, in general, by an appropriate choice of the transition probabilities it is 
possible to write a master equation such that all the moments of P(X, t) 
higher than, say, the rth moment diverge, in which case the criterion stated 
above would not be valid. 

An example is given in Appendix C. 

4. STOCHASTIC DIFFERENTIAL EQUATION M E T H O D S  

The Fokker-Planck equations derived above are not easily solved 
directly, except in the case of  the steady-state solutions, and even in this case, 
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no easy method of solution exists in multivariable situations, in particular, 
when the molecules diffuse in space. 

A Fokker-Planck equation that involves no higher than second-order 
derivatives is, under certain conditions, equivalent to a stochastic differential 
equation, and from such stochastic differential equations iterative methods of 
solution can be developed. 

There are two formalisms available, that of It6 and that of  Stratonovich. 
The two methods yield different stochastic differential equations (SDEs) 
corresponding to the same Fokker-Planck equation and have different inte- 
gration rules, so that the solutions of the different stochastic differential 
equation forms are the same. 4 We choose the formalism developed in Ref. 22, 
where It6 rules are used. (SDEs are developed in a physical context in Refs. 
24 and 25, where Stratonovich rules are used.) We choose the It6 form in 
this work because of its greater simplicity and elegance as well as the fact 
that in iterative procedures, it guarantees the vanishing of a large number of  
terms. 

The rule for associating a stochastic differential equation with a Fokker -  
Planck equation is as follows: for the multivariate system in which the vari- 
ables are the vector y = {y~}, 

~P ~ ~ ( _ v ~ ( y ) p +  1 ~ .  ~ } ~--~ = . ~ ~ . ~ [b~j(y)P] (51) 

the corresponding (It6) stochastic differential equation is 

dy~ = v~(y)dt + ~ g~j(y)dWj(t) (52) 

where 

b~j = ~,  g~gJk (53) 
/r 

The dWj(t) are the increments of  a Gaussian stochastic process, and satisfy 
the following: 

(i) dWj(t) = Wj(t + dt) - Wj(t) 

(ii) (dWs(t))  = 0 

(iii) dW~(t) dWj(t) = (dWr dWj(t))  = 8~j dt 

(54) 

(55) 

(56) 

4 The physical problem of which formalism corresponds to the physical process of adding 
a noise source to a nonstochastic differential equation is not one which we wish to 
discuss here, except to say that the Stratonovich procedure is generally the most 
realistic. This is well discussed in Refs. 22 and 26. This difficulty does not arise here, 
since we know our Fokker-Planck equation, and may make our own choice of corre- 
spondence with complete mathematical and physical equivalence. 
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(iv) 

(v) 

The distribution of dWj( t )  is Gaussian, and, from (iii) and (ii), has 
mean zero and variance dt. 
dWj( t )  is statistically independent of W~(t) - W~(0), where 

W ~ ( t ) -  W~(O)= dW~(t) (57) 
o 

In particular, 

([dWj(t)][W~(t)  - W~(to)]) = 0 (58) 

for t >t to, but the postulate of statistical independence means that the joint  
probability distribution of the W(tn) for a set of increasing times t~ satisfies 

P[W(tO,  W(t2), W(ta) ..... W(t.)] 

= P[W(tO]P[W(t2)  - W(h)]P[W(ta)  - W(t2)] .--P[W(t~) - W(tN_~)] 

(59) 

It is this aspect of independent increments-- the increment being statistically 
independent of all W(t ' )  for t '  < t - - that  characterizes the It6 method and 
yields simple formulas. 

The connection with the physicists' way of writing a stochastic differ- 
ential equation is obtained by setting 

s dt = dW~(t) (60) 

From (22), (23), and (25) we obtain 

(~i( t)~j( t ' ) )  = ~ j  3 ( t -  t ' )  (61) 

If  we now check (25), we find that 

([dW~(t)][W~(t) - W~(t0)l) = dt '  ~(t - t ') (62) 
o 

The It6 prescription requires us to set (62) equal to zero, that is, we give zero 
weight to a delta-function singularity that occurs at the upper limit of a time 
integral. Thus, It6 rules say 

dt '  3(t - t ')  = 0, dt '  3(to - t ') = 1 (63) 
o o 

The Stratonovich rules make the choice 

dWj( t )  = �89 + dt)  - Wj(t  - dt)] (64) 

and thus both integrals (63) become equal to �89 The statistical independence 
of dWj( t )  and W~(t) - Wi(0) is thus abandoned. 

We make this point here because in the evaluation of  results in an 
iterative procedure, integrals with delta-function singularities at the upper 
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limit occur frequently. It will be apparent that the It6 choice; which makes 
these all vanish, will yield a much simpler procedure. 

5. S T O C H A S T I C  D I F F E R E N T I A L  E Q U A T I O N  M E T H O D S  
FOR H I G H E R  O R D E R  F O K K E R - P L A N C K  E Q U A T I O N S  

The relationship between Fokker-Planck equations and the above 
stochastic differential equations is valid only for the case when the Fokker-  
Planck equation is of  no more than second order. Our techniques can yield 
Fokker-Planck equations that are of higher but always finite order, and it is 
appropriate to devise stochastic differential equation methods for Fokker-  
Planck equations of higher order. We have found no evidence that this has 
ever been done before. This is not really surprising, since it appears likely that 
higher order Fokker-Planck equations give probabilities whose positivity 
cannot be guaranteed. Since we deal with quasiprobabilities, this is not a 
problem, and we have been able to generalize the methods of Section 4 to 
arbitrary orders of the Fokker-Planck equation. We now show how this can 
be done for a third-order Fokker-Planck equation. 

Introduce the stochastic variable V(t) whose probability distribution 
P(V, t) obeys the third-order partial differential equation 

OP(V, t)/Ot = --~ OaP(V, t)/OV a (65) 

We then know that the solution of  (65), subject to the boundary condition 

P(V, to) = 3(V - V0) (66) 

is given, by Fourier transform methods, as the conditional probability, 

P(V, t[ V0, to) = (1/2~) dq exp{ i[q(V-  Vo) + Xoqa(t - to)]} (67) 
or) 

The moments of V can be calculated, after a partial integration, to be 

([V(t) - V0] ~) -- 0, n not a multiple of 3 
(68) 

([V(t) - Vo] am) = (~)m(3m[/m!)(t- to) '~ 

Further, since the process (65) is a generalized Markov process, the 
joint probability distribution that V has the value V1 at time tl and the value 
V2 at the later time t2 is given by 

P(Vzt2 : Vzt:) = P(V2t2[ V:t:)P(V:, t:) (69) 

and from (67) we see that the first factor is a function of only V2 - V1 and 
t2 - h ,  so that the variable V(t2) - V(h) is statistically independent of 
V(h), so that this process is a process with independent increments: thus 
dV(t) will be independent of V(t). 
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The rigorous definition of stochastic integration with respect to V(t) is a 
task that we shall not attempt at this stage. We can show, however, that a 
stochastic differential equation of the form 

dy(t) = a(y) dt + b(y) dW(t)  + c(y) dV(t)  (70) 

[with W(t) and V(t) independent processes] is equivalent to a third-order 
Fokker,Planck equation. It is clear that because W(t) and V(t) are Markov 
processes, y( t )  is a Markov process. We then calculate 

lim ([y(t)  - y(to)] ~) = lim ([dy(t~ (71) 
t - , t  o t -- to ato-+O dto 

where y(to) is a numerical initial value, not a stochastic variable. From (70), 
it is clear that y(t)  depends on W(t')  and V(t') for only t '  ~< t and, since 
dl, V(t) and dV(t)  are independent of y(t) ,  we find 

(dy(to)) = (a[y(to)]) dto + (b[y(to)])(dW(to))  + (c[y(to)])(dV(to)) 

= (a[y(to)]) dto = a[y(to)] dto (72) 

because y(to) is a numerical initial value. Similarly, 

(dy(to) 2) = a[y(to)] z dto 2 + b[y(to)]2(dW(to) 2) 

= a[y(to)] 2 dto 2 + b[y(to)] ~ dto (73) 

(dy(to) 3) = a[y(to)] 3 dto 3 + c[y(to)]a(dV(to) 3) 

= a[y(to)] 3 dto a + c[y(to)] 8 dto (74) 

Thus we find 

lim[(y(t) - y(to))/(t  - to)] -- a[y(to)] 
t - ~ t  0 

lim[([y(t) - y(to)]2)/(t - to)] = b[y(to)] 2 (75) 
t ~ t  0 

lim[([y(t) - y(to)]a)/(t - to)] = c[y(to)] 3 
t - * t  o 

and all higher powers give a zero result. This is sufficient (22,24,25) to show 
that y( t )  is a generalized diffusion process, whose generalized Fokker-Planck 
equation is 

a P ( y , t )  ~ ( a ( y ) p _  ~ (~  8 [~ ] ) )  
8-----7-- = --2y -~ b(Y)2P + "~y c(Y)3P (76) 

We define a noise source ~(t) by 

d r ( t )  = ~(t) dt (77) 

where 
(~( t ) )  = (~(t)~(t ' ))  = 0 (78) 

(g(t)g(t ')g(t"))  = 8 ( t -  t ' ) 8 ( t '  - t") (79) 
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and higher moments can be readily calculated from the moments of dV( t ) .  

The independence of increments means that, as in the previous case, integrals 
that have a delta-function singularity at their upper limit are to be taken as 
zero. 

6. A P P L I C A T I O N  OF S T O C H A S T I C  D I F F E R E N T I A L  E Q U A T I O N  
M E T H O D S  TO S I M P L E  R E A C T I O N S  

6.1. In t roduct ion  

A simple reaction is one with only one basic pathway, like 

kz 
�9 .? Y (80a) X k~ 

kz , 

X .  k2 2Y (80b) 

for which the Fokker-Planck equations have been previously derived. The 
stochastic differential equations corresponding to these are 

d~x/dt  = - k ~ c , x  + k2ay,  d~y/dt = k~ax - k2ay (81a) 

and 

d~x/dt = -k1~x + k2~,y 2 
(81b) 

d~y/dt = 2(1c1~x - /c2~y 2) + [2(~1~x -/c2~y~)]~2~(t) 

In the linear reactions, such as (80a), one finds that there is in fact no noise 
term, as in (81a), and the equations are ordinary nonstochastic differential 
equations. Thus, if the initial conditions are fixed numerical values, the 
solutions to (81a) are deterministic numerical values, which are the mean 
value parameters of bivariate Poissons. Thus the linear system possesses 
time-dependent Poisson distribution solutions, whose mean values satisfy 
the deterministic equations. In contrast, (81b) does have a noise term, and 
thus the solutions are in general stochastic quantities, indicating that the 
probability distribution is non-Poissonian. However, at the steady state, when 
k l a x  = k2a~ 2, the noise term vanishes, so there are steady states characterized 
by 

ay • = + (k lax /k2)  ~/2 (82) 

Notice that both the positive and the negative roots have meaning, a general 
probability distribution being 

P ( X , Y )  = e x p ( - ~ x ) - ~ .  I y t  (a~,+)Y + (1 - A) exp .~'-)(~Y-)Y 

(83) 
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which is positive under certain conditions on A, namely 

1 1 
1 + exp(-2~r  +) ~< h ~ 1 - exp(-2~r  +) 

The lower and upper extreme values give probability distributions allowing, 
respectively, only odd and even values of Y. 

The existence of the noise term shows that a time-dependent Poisson 
is not a solution for this system, even if the values of ~x and ~r are fixed 
initially (i.e., a Poissonian initial condition), the time evolution will cause a 
spreading of the probability distribution, which eventually, however, in the 
steady state becomes Poissonian. 

Notice also that the coefficient of r is not a real number if k2~r 2 > 
kx~x and the noise is thus purely imaginary in this region. From a mathe- 
matical point of view, this is equivalent to the fact that the solution to the 
Cauchy problem for a diffusion equation with negative diffusion coefficient 
requires integration along the imaginary axis, i.e., the Markovian property 

P(y", t"[y, t) = f dy' P(y," t"ly', t ')P(y', t'[y, t) (84) 

for a P satisfying 

8p(y, O/at = �89 82p(y, t)/~yZ (85) 

holds as long as the integral is taken along some imaginary axis. This com- 
plication causes no difficulty in any practical solution of these equations. All 
moments are real, and the basic effect is to reduce the variance below the 
Poissonian value. 

6.2.  I n c l u s i o n  o f  S p a t i a l  D i f f u s i o n  

The diffusion master equations introduced in Section 3 give rise to 
stochastic differential equations for (80b) 

k ~2 dc~x,ddt = D~x . j  - kl~x,i + 2 r,~ 

d~r,ddt = ~ D~j~r,s + 2kl~x,~ - 2k2~,.~ + [2(kl~x,~ - k2c~,~)]~/2~:~(t) 

where we have defined 

D~j = d,j - ( ~  d~k)3,j 

(86) 

(87) 
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and the ~:~(t) are independent stochastic sources. Thus, the diffusion, being 
linear, does not  contribute to the noise terms and this is a general result. This 
is to be strongly contrasted with conventional chemical Langevin equations, 
where there is a noise contribution from chemical and diffusion terms. 

The steady-state solution is given by 

k~x,~ = k~d,,, (88) 

with ax,, and ay,~ spatially constant. As before, the noise term vanishes and 
the steady state is thus Poissonian. 

6.3. Condi t ions Under  W h i c h  a Poissonian Steady  Sta te  
Is Achieved 

In any reversible reaction with only one pathway we will always find 
that the noise term and the drift terms vanish simultaneously; thus a Poisson- 
ian steady state results. Further, in any linear system there is no noise term, 
so Poissonian steady states again result. If  we have a pair of reactions, say 

kz ka 
X ~ 2Z, Z ~ 2Y (89) 

the stochastic differential equations are 

dax/dt  = k~az 2 - k l a x  

daz/dt  = 2 ( k l a x  - k zaz  2) + (k4ay 2 - kaaz) + [2(klax - k2az2)]l~2~z(t) (90) 

day/dt = 2(kaaz - k~ay 2) + [2(k3az - k~ar2)]l/2~:y(t) 

and in this case we find the solution in the steady state is given by 

k l a x  = k2az 2, kaaz = k 4 ~  2 (91) 

and again both noise terms vanish. The result is a reflection of the fact that 
the steady state of the reactions satisfies detailed balance, so that each drift 
term and hence each noise term separately vanishes at equilibrium. 

This is not to be confused with the conditions often called detailed 
balance for a master equation in which transitions between all pairs of states 
cancel in the steady state. By detailed balance here we mean that such transi- 
tions for every distinct reaction will cancel. Thus, for example, the reaction 

k ~  ka 
A . - -~- - -X,  2 X .  " B 

k4 

with A and B held fixed, will give a steady-state solution in which the transi- 
tions between states cancel in the steady state, but this steady state only 
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satisfies detailed balance when transitions from each pathway separately 
balance, and the steady state is then thermodynamic equilibrium. 

Thus any system obeying combinatorial kinetics whose steady state 
satisfies detailed balance has a Poissonian steady state. In particular, we 
recover the Poissonian nature of the grand canonical thermodynamic equi- 
librium distribution function. 

However, there are situations that do not have detailed balance in the 
steady state, and yet have a Poissonian steady state, for example, the steady 
state of 

kl ka 
A '  nX B 

k= k4 

(with A and B held fixed) is always Poissonian, though a net flow from A to 
B may exist. 

7. APPLICATIONS TO NONLINEAR EQUILIBRIUM SYSTEMS 
(NO DIFFUSION)  

In this section we shall apply the techniques developed previously to 
derived generalized Fokker-Planck equations and the corresponding sto- 
chastic differential equations for some interesting examples of nonequilibrium 
chemical reactions. 

All of these reactions have been investigated quite thoroughly by various 
authors, whose works are noted. Our aim here is basically to illustrate our 
techniques and show how they apply to well-understood systems. 

7.1. Single-Variable Chemical Reactions Involving at Most  
Bimolecular Steps: The Second-Order Phase Transition 

Consider the chemical process (a,19,27,28) 

ks k~. 
A + X  . ' 2X, B + X  " C (92) 

k~t ks 

described by the master equation 

4 p ( x ,  t ) /d t  = k l B ( X  + 1 ) P ( X  + l, t) + k 3 C P ( X  - 1, t)  

+ k 2 A ( X  - 1)P(X - 1, t )  + k a ( X  + 1 ) X P ( X  + 1, t)  

- [ k i B X  + kaC + k 2 A X  + k ~ X ( X  - 1)]P(X, t) (93) 
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On expanding P ( X ,  t)  in Poisson distributions, one obtains the F o k k e r -  
Planck equation for the quasiprobabil i ty 

af(a, t) a 
at = - a ~  [,%V + (~2 - ,q)~ - ,~4V-~,~2]f(,~, t) 

1 o 
[ 2 ( ~ 2 a -  K ~ V - l a 2 ) f ( %  t)] t (94) + ~  

where we have defined 

k 3 C  = K3V, k2A = ~2, k l B  = K1, k4 = K~V -1 

and thereby exhibited the volume dependence of  the various parameters  
involved. 

For  K4 = 0, (94) may be solved exactly. The solution is given in 
Appendix  C. 

For  ~ # 0 (we shall set it equal to 1) the exact solution of  (94) in terms 
of  known functions is not  possible. 

In order  to obtain a complete asymptot ic  expansion for the various 
moments ,  it is most  convenient  to deal with the stochastic differential equa- 
t ion equivalent to the Fokker -P lanck  equation, which for (94) is, after 
defining a = 7V, 

dT/dt = K3 + (K2 - K~)7 - 72 + ~[2(K2~7 - 72)1~/2~:(t) (95) 

where e = V -1/2. 
Equat ion (95) suggests an obvious procedure  for its iterative solution. 

Expanding 7 in powers of  E, 

7 = "% + e7z + e2~12 + " "  (96 )  

and equating like powers of  ~ on both  sides of  (96), we get 

d•o 
dt 

dt 

dt 

dt 

= ~3 + (~2 - K1)70 - 7 0 2  

= (K2 - K1 - 27o)'ql + [2(K27o - 7o2)]l/2se(t) 

(97a) 

(97b) 

(K2 - 2"0o)71 
= (•2 - K1 - 270)72 - 712 + [2(-~2~o Z ~---~/2 ~:(t) (97c) 

(~2 - 2%)72 
- (K~ - K~ - 2~o)7~a - 27~72 + [2~-~o "_2 ~ - ~ j 2  ~:(t) 

K22712 
- 212(,~27o - 7o2)13/2 se(t) (97d) 
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For  x8 = 0 and ~c2 > xl, 7o = K2 - K1 is a solution of(97a).  Substituting 
this in (97b) and solving the resulting equations, we get 

f2 ~l(t) = (2K1~o) lj2 dr' {exp[ -~o( t  - t ' )]}f( t ' )  (98a) 

~2(t) = - dr' {exp[ -~o( t  - t ' )]}~2(t  ') 

2KI - K2 (~ 
+ (2'q~o) 1~2 -u  dr' {exp[ -~o( t  - t ' ) ] }~( t ' ) f ( t ' )  (98b) 

f; "q3(t) = - 2 dr' { e x p [ -  ~o(t - t ' ) ]}~( t ' )~2( t ' )  

2K1 - Ks .f] + - ~ ) i - ~  -v dr' {exp[ -~o( t  - t ')]}~2(t ')f(t ')  

~22 dt '  {exp[ -~o( t  - t')]}~712(t')~(t ') (98c) 
2(2Ktvo) 3/2 

The mean  and variance are related to ~7~ by the following equat ions:  

( x >  = (,~> = V~o + (,~> + . . .  

( x  2) - < x )  ~ = V[~o + (,~?>] + [2<~7~,~> + < , ~ >  - ( ~ >  + <,1~>] + . . .  

(99) 

where we have used the fact that  (~h) = (~hV2) = (~3) = 0, as they involve 
odd factors o f  ~(t). The various averages that  appear  on the rhs may  be 
calculated using (98a)-(98c). 

To  illustrate the use o f  I t6 rules in the context o f  our  iterative procedure,  
we shall calculate (~72), which contributes to  the terms o f  O(1) in the expan- 
sion for  ( X ( t ) ) .  N o w  

( ~ ( t ) )  = - dr'  {exp[ -~o( t  - t ' ) ] } ( ~ ( t ' ) )  

+ ( 2 ~ o ) ~  ~ d t ' { e x p [ - ~ o ( t  - t ' ) ] } ( ~ ( t ' ) f ( t ' ) )  (100) 

N o w  if we calculate ( .q~(t ' ) f( t ' )) ,  we get 

( ~ ( t ' ) ~ ( t ' ) )  = (2~7o) ~ dr" {exp[ -~o ( t '  - t")]} 3 ( t ' -  t") (i01) 

which, therefore, as was noted in Section 4, mus t  be set equal to zero, since 
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the argument of the delta function vanishes at the upper limit of the integra- 
tion. Hence 

Now 

which gives 

&/2(t)> = - dt'{exp[-~7o(t - t')]}(~Tx2(t')> (102) 

(~72(t)) = - (~1/~70)(1 - e -  2%~) (104) 

Similarly, keeping in mind the rule that 

f ~ dt' g( t, t ') 8( t - t') = 0 

we can calculate all the terms on the rhs of (99). Taking the limit t -+ ~ ,  we 
obtain the expressions for the mean and the variance in the steady state as 

( 1 0 5 )  
( x 2 >  - ( x >  2 = vK~ + [K~K~/(~  - -  ~)~] 

As a check on the above results, we shall calculate the mean and the variance 
directly from the steady-state solution of  the Fokker-Planck equation (94). 

The steady-state solution of the Fokker-Planck equation (94) is obtained 
by setting equal to zero the terms inside the curly bracket. This can be demon- 
strated generally in one-variable systems as follows: Suppose 

af(a, t) a (a(a)f(~, t) + a } a-----~-- = -a--~ ~ [b(a)f(~, t)] (106) 

and suppose the range of the variable is [c, d]. Our boundary conditions 
required to derive the equation require that f (a )  and its derivatives vanish 
at c and d. Hence, in the steady state, integrating from c to a, 

o = a(~)f(~) + ~ [ b ( ~ ) f ( ~ ) ]  ~=c  - a(~)f(~) + ~ [b(~)f(~)] ( 1 0 7 )  

and the first term vanishes, from the boundary condition. 
Thus the steady-state solution of  (94) becomes 

f(a) = e'~(K2 V - a)v(':l -~3/~s )- ~a(~v/~- 1) (108) 

and the range of  a integration is (0, K2). 
There are other possible choices of  the integration contour that satisfy 

the condition necessary for the equivalence of  (93) and (94), but do not lead 

(r/z2(t)) = 2K1~/o (103) 
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to an admissible probability distribution. We shall discuss this together with 
related matters in Appendix C. 

Remember from Section 3 that the factorial moments of P(X,  t) are 
equal to the moments off(% t). We find, defining ~ = ~ V, 

(Xr )1=  V r d~7 exp VT/+  K1- 
0 

+~r In ~]}) (K2-  r])-Lq*-q 

x [ f i2d~  1 (exp(V[r] + @z-- ~)ln(K2 -- "q) 

]} )  } ~  + ~_3 In ~/ (K~ - ~7)-~7 -~ (109) 
K2 

By noting that the integrals in (109) are integral representations of the 
confluent hypergeometric function, we can derive the exact result of McNeil 
and Walls. ~28~ From (109) one may obtain a complete asymptotic expansion 
for the moments in the inverse powers of V using methods outlined in Ref. 
29. We have calculated the first two terms in the asymptotic expansion of the 
mean and the variance in the limit Ka -+ 0. The results are identical to those 
given in (105). 

In (105) terms of O(V) are exactly the same as given by cumulant methods 
or by making the following approximation: 

(Xa)t  = 3[(X2)I - (X)2](X) + (X)  a (110) 

in order to close the hierarchy of the moment equations derived from the 
master equation. In our formulation these approximations correspond 
precisely to approximatingf(a) by a Gaussian. 

7.2. A React ion Tha t  Gives f(a) w i t h  Negat ive  Var iance  

Another interesting example is provided by the following reaction 
mechanismC6,8o,81~ 

B kl > X, 2X k= > A (111) 

The master equation for this process is 

de(X ,  t)/dt = k l B t P ( X  - 1, t) - P(X,  t)] 

+ k2[(X + 2)(X + 1)P(X + 2, t) - X ( X  - 1)P(X, t)] (112) 

and the corresponding Fokker-Planck equation is 

af(a, t) a {  O [@2V-la2) f (a , t ) ] )  (113) 0~-7--- - aa (K~V - 2K2V-~a2)f(a, t) + -Za 
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where K1V = k i B ,  ~2V -~ = k2.  Note that the diffusion coeff• in the 
above Fokker-Planck equation is negative. 

The steady-state solution of (113) is 

f (a )  = ~-2 exp(2a + aV2/a)  (114) 

with a = 2K~/K2 and the a integration is to be performed along a closed 
contour encircling the origin. In this case, since the contour of integration 
is closed, the argument that led to (108) is not applicable. However, the most 
general steady-state solution turns out here not to be single-valued--(114) is 
the unique single-valued steady-state solution. Here again there is another 
possible choice of the a contour, but it does not lead to an admissible prob- 
ability distribution, as we show in Appendix C. 

Thus, by putting ~ = r/V, we get 

V ~ ~ d~ e v(2~ + ~ m ~ -  2 
(Xr>r = (115) 

d~ e v(s" + aln)~- 2 

Unlike the previous example, the function (27 + a/T ) does not have a 
maximum at the deterministic steady state. In fact, it has a minimum at the 
deterministic steady state ~ = +(a/2) lz2. However, in the complex ~ plane 
this point is a saddle point and provides the dominant contribution to the 
integral. 

Thus, the negative diffusion coefficient in (113) reflects itself by giving 
rise to a saddle point at the deterministic steady state, which results in the 
variance in X being less than (X) .  

From (115) all the steady states moments can be calculated exactly. The 
results are 

( x r ) t  = V i~[2(2a)~/2V ] (116) 

where I,[2(2a)l/2V] are the modified Bessel functions. 
Using the large-argument expansion for I,[2(2a) 112 V], we get 

( X )  = V(a/2) ~/2 + } + O ( 1 / V )  
(117) 

( X  2) _ ( X ) 2  = �88 _ 1 + O ( 1 / V )  

which agrees with the results of Refs. 6, 30, and 31. 
The stochastic differential equation corresponding to (113) is 

d~/dt = ,~ - 2K2~ 2 + iffZK2)~/2~(t)~(t) (118) 

where as before c~ = ~ V. 
Proceeding exactly as before, we have calculated the first two terms in 

the asymptotic expansion for the mean and the variance, which in the steady 
state are identical to those given by (118). 
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7.3 .  A Single-Variable Chemical Reaction Involving a 
Trimolecular Step ~'8~'88~ 

Consider the chemical process 

k~ ka 
A + 2X ' 3X, A . ' X 

ka k~ 

The master equation for (119) is 

(119) 

alP(X, t)/dt = k l A ( X -  1 ) ( X -  2 ) e ( x -  1, t) + k2(x+ 1 ) x ( x -  1)P(X + 1,t) 

+ k3AP(X - 1, t) + k~(X + 1)P(X + 1, t) 

- [ k l A X ( X  - 1) + k 2 X ( X  - 1)(X - 2) + k 3 A  + k ~ X ] P ( X ,  t )  

(120) 

and the corresponding Fokker-Planck equation is 

0f(a, t) O 
Ot = -0--c~ [ ( K I V - I ~ z  - •2V-283 + K a V -  K,a)f(c~, t)] 

1 02 
+ ]  ~ [4 (~V- la  ~ - , ~ 2 V - ~ 8 ) f ( a ,  t)] 

1 08 [6(K~V_la 2 _ K2V_2c~3)f(c~, t)] (121) 
3 ! 0a 8 

where K1V -1 = k l A ,  K 2 V  -2  = k2 ,  K a V  = k s ,  ,% = k4 .  

In the steady state (121) reduces to a linear second-order differential 
equation, which may be solved in terms of hypergeometric functions, and an 
asymptotic expansion for the various moments can be obtained using 
methods outlined previously. This procedure, although possible in principle, 
is not very practicable. It is in such cases that the method of stochastic 
differential equations proves to be very useful in its ease of application. 

Following Section 5, the stochastic differential equation equivalent to 
(121) is 

&7(t ) /d t  = K~7(t)  2 - K2~7(t) 8 + Ka - K4~(t) 

+/~8{4[Kl~7(t) 2 - K2~(t)3]}l;2~(t) 

+ /x4{6[Kl~(t) 2 - K2~(t)a])~/8~(t) (122) 

where a = vV, t~ = V -~/6, and the noise source ~(t), henceforth referred to 
as the "third-order  noise," has been defined in Section 5. 

Equation (122) may be solved iteratively by expanding v(t), 

7/(t) = T0(t) +/~8~a(t) +/x4v4(t) +/~6v6(t) +/~svs(t) + txgvg(t) +""  (123) 

which, when substituted in (122), yields the deterministic equation in the 
lowest order and linear stochastic differential equations in the higher orders, 
which may be solved as before. 
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In the steady state the results are 

2ab 
<x> = V~o + <7~> = v~o + 7 -  

{X2> - (X) 2 = V{na 2) + [2{%ha> + 2(,074) + {~62) - <76) 2 + {~6)] +"" 

= v  + - 7 -  + c ~ c 3 + 7 - /  +''" 

<(x- <x))~> = v[<~> - 3<~3~><7& + 3<7~> + 70] 

= V c ~ + 7o (124) 

where a = K~o 2 - K27o a, b = 2K~ - 3K2~o, c = K~ - 2K~% + 3K2% 2, and 
7o is the solution of  the steady-state deterministic equation 

~ l " q o  2 - K~o a + Ka - ~:4~o = 0 (125) 

Here a few remarks are in order. The "third-order  noise" ~(t) contributes to 
O ( V  -~) to the mean, to O(1) to the variance, but contributes to O(V)  to the 
skewness coefficient. To O ( V )  the results for the mean and the variance are 
identical to those given by the cumulant method and in fact if  one is only 
interested in calculating the mean and the variance to O(V), the third-order 
noise may be dropped from (122) and the expansion carried out in the powers 
of  e. Also note that as c --> 0 the variance and the higher order corrections 
become divergent. This, of course, is due to the fact that in this limit, the 
reaction system exhibits a first-order phase-transition type behavior, as has 
been discussed in Refs. 27, 32, and 33. 

A further point to note is that our simple iterative method expands about 
a Poisson whose mean is the deterministic mean. In the case, as arises here, 
that multiple steady states are possible, it gives an asymptotic expansion for 
the moments of  one or another of the possible stable solutions, but tells 
nothing about relative stability. The unstable solution, however, gives an 
iterative solution, which, as expected, diverges. 

8. N O N L I N E A R  C H E M I C A L  R E A C T I O N S  W I T H  D I F F U S I O N  (3'4) 

The Fokker-Planck equation for a multicell system with diffusion and 
the chemical reaction (92) is 

Ot = - ~ D*iaJ + AV•o + (K2 - K1)a, - (AV)-la,2)f(=, t)] 

1 82 
+ 2 "7" ~ ~ {2[Kea, - (A V)- la,2]f(ct, t)} (126) 
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Here A V represents the volume of  the cell. Defining ~ = adA V, the stochastic 
differential equation equivalent to  (126) is 

dn~ 1 
= . ~ ,  Di?Ty + K3 + (~c2 - K1)~i - -  ~i 2 + (AV)I/'---"-" ~ [2(K2rh -- ~,2)]~/28,(t) 

(127) 

The mean and the correlation ffmction in X~ variables are related to the 
moments  of  ~q, variables through the following equations: 

( X d t ) )  = AV(7/dt)) 

(X~X~.) - (X,)(X~) = (AV)~[(~7,~) - (n~)(n~) + (~7~)AVJ (128) 

In the cont inuum limit, i.e., AV--,  0, (127) and (128) become 

d~(r, t ) ld t  = (o@~))(r, t) + xa + (~2 - ~)~/(r, t) - ~ff(r, t) 

+ {2[K~(r, t) - -o~(r, t)]}~/=~:(r, t) (129) 
and 

(p(r, t ) )  = ('0(r, t ) )  

(p(r, t)p(r', t ) )  - (p(r, t ) )(p(r ' ,  t ) )  

= (~/(r, t)~7(r', t ) )  - (~(r, t ))(~(r ' ,  t ) )  + (~(r, t ) )  8(r - r ') (130) 

where ~ is the cont inuum limit of  the matrix D ,  defined previously and 

- f  ~(Ir  - r'l)~(r', t) dr' (~7/)(r, t) 

and 
p(r, t) = X d t ) / A V ,  ~(r, t) = ~ ( t ) / ( A V )  1/~ (131) 

Here p(r, t) corresponds to the concentration variable. 
This adoption of  a cont inuum form is a mathematical  device, and will 

require a cutoff  in our Fourier t ransform variable. The factor 1/(AV) lt2 
becomes absorbed into the noise source, and we are left without  any obvious 
expansion parameter. We formally introduce a parameter ;~ in (129) as 

d~(r, t ) /d t  = (~,7)(r, t) + ~a + (~2 - ~l)~/(r, t) - ~2(r, t) 

+ ~{2[~:2~(r, t) - ~Z(r, t)]}l'2~(r, t) (132) 

and expand ~(X, t) in powers of  A as 

~(r, t) = To(r, t) + ;~ (r ,  t) + ~2~2(r, t) +. . .  (133) 

and set A equal to one at the end of  the calculation. However, if  it is under- 
stood that  all Fourier variable integrals have a cutoff (A V)- ~m, this will still 
be in fact a (AV) -1 expansion. 

Substituting (133) in (129), we get 

d~o(r, t) 
dt = (~Wo)(r, t) + ~c3 + (~2 - Kt)%(r, t) - %~(r, t) (134a) 
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d~(r, t) 
dt = ( ~ g l ) ( r ,  t )  + [x2 - Kt - 2%(r ,  t ) ]~l(r ,  t )  

+ {2[K2r/o(r, t )  - ~o2(r, t)l}lt2~(r, t)  (134b) 

dr/2(r, t )  
dt = (gr/z)(r ,  t )  + [~c2 - K~ - 2rio(r, t)]r/z(r, t )  - ~/~2(r, t )  

+ [K2 - 2~7o(r, t)l~71(r, t )~(r ,  t )  (134c) 
{2[~2r/o(r, t )  - "qo2(r, t)]} 1/2 

drls(r, t )  
dt = ( ~ % ) ( r ,  t)  + [K2 - K~ - 2%(r ,  t)]r/3(r, t )  - 2~7~(r, t)~72(r, t)  

[K2 - 2r/o(r, t)]r/2(r, t )~(r ,  t )  

_ ~2%7~2(r, t )~(r ,  t )  ( I34d)  
2{2[K2~o(r, t )  - ~o2(r, t)]} 3;~ 

F o r  K3 = 0, ~c2 - K~ > 0, (134a) has  a h o m o g e n e o u s  s teady-s ta te  so lu t ion  

~o(r, t) = 7o = ~ - ~ 035)  

Subs t i tu t ing  this  in (134b)- (134d)  a n d  t ak ing  the  F o u r i e r  t r ans fo rms ,  we get  

~ ( q ,  t)  = (2K~)o) ~2 dr' ( e x p { - [ ~ ( q  2) + "~o](t - t ')})~(q, t ' )  (136a) 

~ ( q ,  t) = - d~q~ dr' 

x ( e x p { - [ ~ ( q ~ )  + ~o](t - t ' ) } ) ~ ( q  - q l ,  t ')#~(q~, t ' )  

+ ( 2 x ~ o ) ~ t 2 )  dSqz dt' 

x ( e x p { - [ ~ ( q 2 )  + ~o](t - t ' ) ) ) ~ ( q  - q~, t ' )~(q~, t ' )  (136b) 

( %(q, t) = - 2  J d~ql dt' 

t ~ ~ • (exp{- [ . f f (qZ)  + ~/o](t )})~7~(q~, t ' ) ~ ( q  - q~, t)  

2 ~  - ~ f  ~i  
+ (2~1~7o)~ 2 daq~ dt' 

• ( e x p { - [ ~ ( q ~ )  + ~7o](t - t ' )} )~(q~ ,  t ' )~(q  - q~, t ' )  

2(2~1~o)~r 2 d q~ d q2 dt 

• ! ~ t ~ ( exp{ - - [~ (q2 )  + ~7o](t t )))~1(ql ,  )r/l(q~, t ' ) s  -- qz -- q2, t ' )  
(136c) 
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where 

t) = [1/(2~-) 312] f [exp(-iq.r)]r/l(r, t) dr ~l(q, 

etc., and ~(qZ) is the Fourier transform of ~(Ir - r'[). We have left out the 
trivial initial value terms in (136a)-(136c). 

To the lowest order, the mean concentration and the correlation function 
are given by 

(p(r, t ))  = r/o (137a) 

(p(r, t)p(r', t))  - (p(r, t))(p(r ' ,  t))  

= r/o ~(r - r') + (r/l(r, t)r/l(r', t))  (137b) 

Now from (137b) it follows that 

(~(q ,  t)~(q',  t)) - Klr/~ + q') (1 - exp{ -2 [~ (q  2) + r/o]t}) (138) 
[~(qZ) + r/o] 

Hence the lowest order contributions to the correlation function in the 
steady state are given by 

(p(r)p(r')) - (p(r))(p(r '))  

Klr/0 ,I -z exp[iq.(r - r')] 
- - r / o 3 ( r - r ' ) + ~ j ~ _ a q  [~(q2)+%] (139) 

If  we assume that 

(~r/)(r) = D VZr/(r) (140) 

where D is the diffusion coefficient, (139) corresponds exactly to the results 
given in Ref. 3. 

The next order correction to the mean concentration is (r/2(r, t)).  Now 
from (136b) 

(~2(q, t)) = - daq~ dr' (exp{- [~(q2) + r/o](t - t')}) 

x (~l(q - q~, t')#l(q~, t ' ))  (141) 

In the steady state (141) gives 

f dSql (142) 
(~z(q)) = -'c~ 3(q) [~(qZ) + r/o] 

For the choice of  ~ given by (140), Eq. (142) gives 

K1 f d3ql (143) 
(r/z) = (2~j)a,2 [Dq z + ~o1 
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which is divergent at the q - +  oa limit. This of course is a consequence of 
the continuum notation, which should only be regarded as a mathematical  
artifice to simplify the solutions. There are two ways in which this problem 
may be rectified. One may either choose a diffusion operator with a built-in 
upper cutoff on q or one may simply assume that in all the q integrals 
q <<. l/l,  where l is the cell length. We shall adopt  the latter alternative 
because of its simplicity from a calculational point of  view and continue to 
work with the diffusion operator given by (140). In any case the large-q 
cutoff does not matter as far as the phase transition behavior is concerned. 

We have also worked out the higher order corrections, viz. 

2(~/,(r)~a(r')> + (~/2(r)~72(r')) - (~2(r))(nu(r')) + (~2(r)) 8(r - r ') 

to the density correlation function, but we shall omit the details and only give 
the expressions for the variance because of their relevance to the phase 
transition aspects of  the chemical reaction model under consideration. The 
results are 

( X [ V ] )  2 = f dr dr' [(p(r)p(r')) - (o(r))(o(r ' ) ) ]  (x~[v]> 

V(K12 
+ 2K12~o V I = ~2V + 3~,/o) i~ + (144) 
2D 2 ~ 

where 

and 

f 11~ daq 
11= 

�9 ~o (q~ + % / D ) ( q  ~ + 3~o/2D) 

f 
ill daq 

Is=  
�9 ,o (q2 + ~o/D)2(q2 + 3%/D) 

(145) 

x[v] = Jv dr p(r) 

and for later use we have put the number of  space dimensions in (145) equal 
to d. 

The first term in (144) is the same as that given by the Gaussian approxi- 
mation. We shall now examine the behavior o f /1  a n d / 2  as a function of  d 
near the phase transition point K2 - K1 = 0. Putting y = rlo/D and defining 
q = 7,~/2x, we get 

& = ~ ~O/ ao ~ (x = + 0(x = + }) 
(146) 

6 = p ( ~ ~ f  ao (x ~+l)=(x = + } )  
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Thus, as To -~ 0, 

2~ '~I2 (Vo)(d-'~)/2 fo~ xa-Zdx 
/ 1 -  P(d/2) D (x 2 + 1)(x 2 + 2 a-) 

(147) 

/2 = P(--(~/2) \ D r  go ( x2 + 1)=( x= + a) 

Both of the x integrals are finite for d < 4. From (147) and (145) it follows 
that the correction to the variance diverges like ,/~o a-~r for d < 4 and 
logarithmically for d = 4. For  d > 4 the corrections are finite, but depend 
on l, the cell size, and go to zero as l--> oo. Thus we conclude that: 

(a) For  d > 4 the Gaussian approximation is valid, even near the critical 
points, in the limit of large cell size. 

(b) For d < 4 the Gaussian approximation breaks down in the critical 
region and the perturbation theory based on the decomposition of ~ into a 
"'macroscopic pa r t "  and "fluctuating par ts"  is no longer valid, no matter 
how large the ceil. 

This result is clearly related to that of Mori and McNeil, ca~y who find 
that the critical dimension for this model is d = 4. 

8,1, A Cr i t ique  of  the  Cell M o d e l  

The modeling of  diffusion as a stochastic process in which molecules 
jump from one cell to the next seems at first to be very natural. However, the 
corrections to the mean and, in particular, the second-order correction given 
by (t42) are divergent as l - ~  0, while this does not happen in the corrections 
to the variance, which approach a welI-defined value as long as l is less than 
the correlation length (D/Vo) 112. 

This is a disturbing feature of  this method of  attacking reaction-diffusion 
equations, whose solution is not clear. It is clear that the divergence has its 
origin in the v=(r) term, which is local, and implies that only pairs of molecules 
within a cell react with each other. The very size of  the molecules indicates 
that the interaction must be in some sense nonlocal, and that some term of  
the form 

fdr' g(r, r")~/(r')v/(r") dr" r'~ 

should be used, and the Fourier transformation of  g(r, r ' ,  r") would provide 
a natural cutoff. In fact the cell model, before the continuum form is taken, 
is of  this form. The evaluation of the function g(r, r', r ' )  is, however, a 
trickier task, and requires some more microscopic theory of the reaction- 
diffusion system. 
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9. C O N C L U S I O N  A N D  S U M M A R Y  

In this paper, we have developed a powerful and novel technique for 
handling chemical master equations, by showing their equivalence to certain 
stochastic differential equations. We have used the techniques to reformulate 
and extend the theory of equilibrium and nonequilibrium reaction and 
reaction-diffusion systems. The major developments achieved by means of 
our techniques are as follows: 

(i) The concept of Poissonian states as fundamental: The multivariate 
factorizable Poisson distribution is shown in Appendix A to be the most 
natural distribution to use in the case of thermodynamic equilibrium. The 
expansion in Poissons, as in the case of quantum optical coherent state 
methods, reduces linear systems to simple deterministic systems, and yields 
noise effects in nonlinear systems that are the result of nonlinearity only. 

(ii) Systematic approximation procedures have been developed, by 
means of the stochastic differential equation methods, for the chemical 
master equations. These are useful basically as methods of checking the 
accuracy of the lowest order terms, though in principle they can be used to 
high orders if the complexity of the terms can be handled. The rather com- 
plicated form of the noise term can make this difficult. However, the stochastic 
differential equations are available for other methods of treatment. 

(iii) Multivariable systems car/ be handled by these techniques in a 
simple and readily comprehensible way. Previous methods have found 
multivariable systems much more difficult than single-variable systems. 

(iv) Simple Gaussian approximation methods by linearizing the sto- 
chastic differential equations are available for most situations, reserving the 
full treatment of nonlinearity for critical phenomena. These linearized 
stochastic differential equations are valid (in this degree of approximation) 
for the description of nonequilibrium as well as equilibrium phenomena, and, 
it should be emphasized, the correct noise parameters are specified (i.e., do 
not require extra postulates). 

(v) An understanding of the range of validity of the Gaussian approxi- 
mation has been reached by the ability to calculate higher corrections by 
means of the systematic approximation procedure. We have shown that the 
Gaussian approximation is almost always valid, as long as the volume of the 
cells is not too small, except near critical points. 

(vi) The formulation of third-order and higher order noise : This theory, 
developed in Section 5, is in principle necessary for the solution of general 
higher order Fokker-Planck equations, though we have shown that it is 
generally of negligible effect, except possibly at critical points, as we noted 
in the treatment of a simple first-order phase transition model in Section 7.3. 
There may be work for the mathematicians in making rigorous the somewhat 
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heuristic arguments given in Section 5, and in the generalization to stochastic 
processes in the complex plane. 

As a final point, let us note that the Poisson method is clearly applicable 
to any master equation in which the transitions are between only finitely 
separated states and the transition probabilities per unit time are polynomials. 
There are many examples of such models, e.g., the Glauber Ising model 
master equation, and certain laser master equations. 

APPENDIX A. EQUIVALENCE OF CANONICAL AND 
POISSONIAN DISTRIBUTIONS 

The canonical distribution corresponding to the reaction 

k..._./_..~l 
IX ~ mY 

P(x,  Y) = c 1--I (2)x' ( ?)Y' N - ~ rnXj - lYj (A1) 

Here ~ is the,total number of cells. This may be written as 

c .~ 121 (s ~, (Yz') Y, 
P(X,Y) = 2-~ _ dzz-N' l~=~ Z i  rj! (A2) 

where the contour encircles the origin. 
The generating function is 

G.(s, t) = ~ e(X, Y) 1--I s~:,t~, (A3) 
xiYi f=l 

) = c & z -N exp 2z'~s~ + ~zzt~ (A4) 
2~ri 

The generating function for the probability distribution in a finite volume v 
of r cells is obtained by setting sj = t s = 1 for all j ~ v. Thus 

c_c__ (~ dz z -  ~ exp{n(2z = + igzZ ) 
Gr(s, t) --- 2~ri I z 

+ ~ [~zm(s, -- 1) + YzZ(t=- 1)]} (A5) 

Note that since )~ and Y are not equal (although proportional) to < X~> and 
< Y,>, one does not necessarily have 

n(rn~ + I Y) = N (A6) 

However, because of the delta function on the rhs of (A2), we may always 
scale k and I? by the transformation 

ams s 

altering only the normalization in such a way that (A6) is satisfied. 
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Henceforth we shall assume that 2" and I ~ are chosen to be such that 
(A6) is satisfied. Now let 

n 2  = (N/m)/3, n Y = (N/ t ) (1  - / 3 )  (A7) 

Substituting these in (29), we get 

c f dz C _ _  7z' ] Gr(s, t) = exp~N[~-/3 + (1 - / 3 )  - In z 

+ ~ [ f ( z m ( s ,  - 1 ) +  f~z~(h - 1)1} (AS) 

In the limit N--> ~ the integral may be evaluated asymptotically by the 
saddle point method. 

The saddle points are given by 

/ 3 + 7 ( l - / 3 ) - 1 n z  = 0  (A9) 

which gives 

zm/3 + ZZ(1 -- /3) -- 1 = 0 (A10) 

which has a root at z = 1. In all the cases we have checked, this is the 
dominant root, and we conjecture that it is always the dominant root. We 
have 

n/Nfinite ;' exp (st - 1) + I ~ ( h -  1) (Al l )  
Lte~ 

which corresponds to a multivariate factorized Poisson distribution. 
Similar considerations apply to the general reaction (31). 

A P P E N D I X  B. E X A C T  T I M E - D E P E N D E N T  S O L U T I O N  FOR 
A S I M P L E  N O N E Q U I L I B R l U M  R E A C T I O N  

The Fokker-Planck equation for the chemical process Ca> 

kx 
A + X > 2X, B -[- X ka ' C (B1) 

is 

ef(% t) 
~t 

e~ {[K3v + (K2 - ~l)~]f(~,  t)) + ~ [~2~f(~, t)] (B2) 
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Substituting 

f(a, t) = e-atf(a)ga(a) 

in (B2), wheref(~) is the steady-state solution of (B2) given by 

we get 

d2g~ 
'%'~ d-YJ + [ , % v -  (K1 - K~)] + ,~g~, = 0 

which may be solved to give 

g~(c 0 = M (  Kz--h K2'KaV'K~--K2 ) K 2  K2 

where M(a, b, z) is the confluent hypergeometric function. Thus 

f ( c * , t ) = ( e x p ( - ~ t ) e x p [ - ( ~ ) ~ ] ) o ~  (~av'~2-~' 

(B3) 

(B4) 

(BS) 

(B6) 

M( 
i.e. 1 - -  K 2 K 2 K 2  

as ~ -+ oo it follows that f(cq t) and its first derivative would go to zero as 
a --+ oo provided that 

A = m(K 1 - K2) (B8) 

where m is any positive integer, in which case the confluent hypergeometric 
function reduces to Laguerre polynomials. Thus the desired solution of (B2) 
may be written as 

fQz, t)=e-(~l-~z)~a~sVl~2-1~maO-m(~l-~)tr~avlx2-1[xl--K2 ) - m  . . . .  m ~" x2 ~ (B9) 

where the am are determined by the initial condition. To obtain P(X, t) corre- 
sponding to (B9), the integration has to be carried out along the contour 
(0, oo), for f(cq t) and its first derivative vanish at the end points of this 
contour. 

The rhs of (B9) may be simplified if we choose am = 1, in which case 
we get 

_ [ K~--K2C~] [.__~._~ ~3v/~ 1 exp (B10) f(~, t) = \ok(t) ] ~ K2 4;~) 

•  A , '%V,~1 - '%  ),~ 
K1 - K2 K2 k:2 ( B T )  

From the behavior of 
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where 

~(t)  = 1 - e - ( ~ l - ~  )t ( B l l )  

I t  follows f rom (BIO) tha t  the choice ~r~ = 1 corresponds  to 

f(a,  0) = 8(a) (B12) 

F r o m  (B10), P(X, t) ano~all its moment s  may  be calculated exactly: 

(f0~176 a(~c3vl~c2) + T _ 1 exp <xr(t)>I = [q~/)]r (KZ ~ xz)a'~ 
K2 J 

x c~av/~- 1 exp (Kt - -  K2)~] - 1 
�9 '% J 

(B13) 

corresponding to the initial cond i t i on f ( a ,  0) = 8(a), which corresponds  to 

P(X, O) = 8x.o (B14) 

A P P E N D I X  C. O N  T H E  C H O I C E  OF a C O N T O U R S  

The possible choices of  the contour  of  integrat ion f o r f ( a )  given by (108) 
are: (i) con tour  cl extending f rom 0 to ~c2; (ii) contour  c2 extending f rom K2 
to - oo; (iii) con tour  ca extending f rom 0 to - co. 

The  contour  ca gives a solution which is a linear combina t ion  of  those 
given by cl and Cz and hence there are only two independent  choices of  the 
contour  of  integration.  

N o w  for  the contour  c2 the generating funct ion corresponding to the 
probabi l i ty  distr ibution is 

G(s) = c e~(S-1)e~(K2V- ~)v(~l-~3/~)-la~vl~2-1d~ (C1) 
lC 2 

which is infinite at s = - 1 and it follows f rom the a rgument  given in Section 
3.4 tha t  it does not  lead to an admissible probabi l i ty  distribution. Indeed,  
in the steady state the generat ing funct ion equat ion m a y  be solved directly 
in terms of  the hypergeometr ic  functions and one finds tha t  only one of  the 
two linearly independent  solutions is finite at s = - 1. 

Also note  tha t  (108) leads to a nontr ivial  P(X, t) only if  the limit K 3 -+  0 
is taken after  the limit V---> oo. I f  K3 is set equal  to zero in (108) in the begin- 
ning, then the only permissible contour  of  integrat ion is a closed contour  
encircling the origin, in which case all the momen t s  of  P(X, t) vanish,  and 

P(X)~ = 8x.o (C2) 

Tha t  this is the exact solution in the case tha t  Ka = 0 is obvious,  since, if  all 
molecules o f  X are lost, there is no mechanism for  producing  a molecule of  
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X. However, the K3 --+ 0 limit of the larger volume limit is well defined, and 
does not give the trivial solution (C2). 

Fo r f ( a )  given by (114) the two choices of the contour of integration are 
(i) a closed contour encircling the origin, (ii) a contour extending from 0-  
to - oo. 

The generating function for the latter choice is 

G(s) = _ exp[(s-1)c~]exp 2~ + a  2 da~ (C3) 

which, although finite at s = - 1 ,  has divergent second and higher order 
derivatives and therefore does not correspond to an admissible probability 
distribution. 

On the basis of the argument that the difference between the probabilities 
of having even or odd particles is zero or finite, Mazo (31~ and Malek-Mansour 
and Nicolis (8) have suggested 
generating function equation: 

G ( -  1) -- 0 

G ( -  1) = finite 

the following boundary condition on the 

(Mazo) (C4) 
(Malek-Mansour and Nicolis) 

Mazo's boundary condition is satisfied by the admissible generating function 
for the reaction (111) but not by the one for the reaction (92) and is therefore 
not generally valid, whereas that of  Malek-Mansour and Nicolis is satisfied 
in both cases. However, the inadmissible generating function for (111) is also 
finite at s = - 1  and therefore Nicolis' condition is not sufficient and one 
also has to require the finiteness of all the derivatives of G(s), s = - 1, if one 
believes all the moments do exist. 

As noted, it is possible to conceive of a master equation that gives 
divergent moments; for example, consider the system 

A + 2X-+  3X, A + X---~ 2X, 2X---~ C, X - + D  (C5) 

so that 

dP(X,  t)/dt = t + ( X  - 1)P(X - 1, t) + t - ( X  + 1)P(X + 1, t) 

- [t+(X) + t - ( X ) ] P ( X ,  t) (C6) 

For suitable values of  the concentrations of A, C, and D and the rate con- 
stants, we can have 

t + ( x )  = k x  2, t - ( x )  = k x ( x  + r) (c7) 
so that 

P(X)ss = P ( O ) f i  t+(i -- 1) = P(O) r! X! (C8) 
~=z t - ( i )  ( X  + r)!  

for which all moments <X "> are divergent for n/> r - 1. 
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Thus analyticity of G(s) inside the unit circle, or any condition on G(s) 
on the unit circle apart from G(1) = 1, is impossible, and the correct choice 
of G(s) can only be made by requiring 

P(X) = 1 (C9a) 
X = 0  

P(X) >1 O, Vx >>. 0 (C9b) 

P(X) = 0, Vx < 0 (C9c) 

However, (C9a)-(C9c) do require G(s) to be analytic inside the unit circle. 

ACKNOWLEDG M ENTS 

We wish to thank particularly our colleague, Dr. D. F. Walls, for many 
discussions and for constructive criticism, and Prof. N. G. van Kampen for a 
stimulating correspondence and preprints. One of us (C. W. G.) wishes to 
acknowledge the stimulation obtained during conversations with many 
colleagues at the Gordon Conference on instability phenomena in July 1976. 

REFERENCES 

1. A. Nitzan, P. Ortoleva, J. Deutch, and J. Ross, J. Chem. Phys. 61:1056 (1974). 
2. Joel Keizer, J. Chem. Phys. 64:1679 (1976); 63:398, 5037 (1975); and preprint to be 

published in J. Chem. Phys. 
3. C. W. Gardiner, K. J. McNeil, D. F. Walls, and I. S. Matheson, J. Stat. Phys. 

14:307 (1976). 
4. N. G. van Kampen, Fluctuations in Continuous Systems, in Topics in Statistical 

Mechanics and Biophysics, R. Picirelli, ed. (American Inst. Physics, 1976). 
5. N. G. van Kampen, Can. J. Phys. 39:551 (1961). 
6. G. Nicolis and I. Prigogine, Proe. Nat. Aead. Sci. (U.S.) 68:2102 (1971). 
7. G. Nicolis, M. Malek-Mansour, K. Kitahara, and A. van Nypelseer, Phys. Lett. 

48A:217 (1974). 
8. M. Malek-Mansour and G. Nicolis, J. Stat. Phys. 13:197 (1975). 
9. H. Lemarchand arid G. Nicolis, Physiea 82A:521 (1976). 

10. P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability and 
Fluctuations (Wiley-Interscience, New York, 1971). 

11. S. Grossman, J. Chem. Phys. 65:2007 (1976). 
12. C. W. Gardiner, J. Stat. Phys. 15:451 (1976). 
13. T. G. Kurtz, J. Chem. Phys. 57:2976 (1972). 
14. D. A. McQuarrie, J. Appl. Prob. 4:413 (1967). 
15. R. Kubo, J. Phys. Soc. Japan 12:570 (1962); A. T. Bharucha-Reid, Elements of the 

Theory of  Markoff Processes and their Applications (McGraw-Hill, New York, 1960). 
16. R. Kubo, K. Matsuo, and K. Kitahara, J. Stat. Phys. 9:51 (1973); K. Kitahara, 

Thesis, Universite Libre de Bruxelles (1974). 
17. R. GOrtz and D. F. Walls, Steady State Solutions of Master Equations Without 

Detailed Balance, to be published in Z. Physik. 



468 C. W, Gardiner and S. Chaturvedi 

18. N. G. van Kampen, Adv. Chem. Phys. 34:245 (1976). 
19. S. Chaturvedi, C. W. Gardiner, and D. F. Walls, Phys. Lett. 57A:404 (1976). 
20. E. C. G. Sudarshan, Phys. Rev. Lett. 16:534 (1966). 
21. R. J. Glauber, Phys. Rev. 130:2529 (1963); 131:2761 (1963). 
22. L. Arnold, Stochastic Differential Equations (Wiley-Interscience, New York, 1974). 
23. N. G. van Kampen, Phys. Lett. 59A:333 (1976). 
24. H. Haken, Rev. Mod. Phys. 47:67 (1975). 
25. R. Graham, Springer Tracts in Modern Physics, Vol. 66, No. 2. 
26. Richard E. Mortensen, J. Stat. Phys. 1:271 (1969). 
27. F. Schlogl, Z. Physik 253:147 (1972). 
28. K. J. McNeil and D. F. Walls, J. Star. Phys. 10:439 (1974). 
29. A. Erdelyi, in Analytic Methods in Mathematical Physics, R. P. Gilbert and R. G. 

Newton, eds. (Gordon and Breach, New York, 1968). 
30. G. Nicolis, J. Stat. Phys. 6:195 (1972). 
31. R. M. Mazo, J. Chem. Phys. 62:4244 (1975). 
32. I. S. Matheson, D. F. Walls, and C. W. Gardiner, J. Star. Phys. 12:21 (1975). 
33. H. K. Janssen, Z. Physik 270:67 (1974). 
34. H. Mori and K. J. McNeil, Kyushu University preprint (1976). 


